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Abstract— Photoacoustic imaging (PAI) is an emerging non-

invasive imaging modality combining the advantages of 

ultrasound imaging and optical imaging. Image reconstruction 

is an essential topic in photoacoustic imaging, which is 

unfortunately an ill-posed problem due to the complex and 

unknown optical/acoustic parameters in tissue. Conventional 

algorithms used in photoacoustic imaging (e.g., delay-and-sum) 

provide a fast solution while many artifacts remain. 

Convolutional neural network (CNN) has shown state-of-the-art 

results in computer vision, and more and more work based on 

CNN has been studied in medical image processing recently. In 

this paper, we propose Y-Net: a CNN architecture to reconstruct 

the PA image by integrating both raw data and beamformed 

images as input. The network connected two encoders with one 

decoder path, which optimally utilizes more information from 

raw data and beamformed image. The results of the simulation 

showed a good performance compared with conventional deep-

learning based algorithms and other model-based methods. The 

proposed Y-Net architecture has significant potential in medical 

image reconstruction beyond PAI. 

I. INTRODUCTION 

Photoacoustic tomography (PAT) is a hybrid imaging 
modality that mixed both optical and ultrasonic advantages. 
PAT excites ultrasonic wave by pulsed laser, which has 
embodied both optical absorption contrast and ultrasonic deep-
resolution [1, 2]. Many practical applications have been 
investigated to show its great potential in clinical and 
preclinical imaging, such as early-stage cancer and small 
animal whole body imaging [3-6]. To obtain the image from 
the PA signals, image reconstruction is a significant topic of 
concern. Conventional reconstruction algorithms, e.g., filtered 
back-projection, delay-and-sum, are very popular due to fast 
reconstructive time. However, the imperfection of 
conventional algorithms is severe artifact, which results in 
distorted images especially in limited view configuration. 

Deep learning has been much developed in recent years, 
especially in computer vision. Recently, deep learning 
methods are beginning to attract intensive research interest in 
image reconstruction problems for photoacoustic imaging [7-
9]. The two main methods are direct and post-processing [10], 
and the difference between them is input data: the former 
method feeds the raw PA data and convert into image at the 
output of the network (raw data-feature-image); the latter 
method feeds a poor quality PA image and convert the feature 
of image into the final image(image-feature-image). 
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In this paper, a CNN-based architecture, named Y-Net, is 
proposed to solve the image reconstruction problem for PAT, 
which simultaneously has two inputs and one output. The 
approach can be called hybrid processing: both the measured 
raw data and a beamformed image are used as inputs, which 
contain different types of information respectively: rich details 
and overall textures. In the numerical experiment, the training 
data is generated by MATLAB loading the factitious 
segmented vessels from a public database and verified by 
experiments. The trained model showed good performance in 
test dataset compared with conventional reconstruction 
algorithms and other deep-learning based methods, such as U-
Net.  

II. METHOD 

A. Numerical vessels data generation for training 

The deep-learning-based approach is data-driven method 
that requires a number of data for training to get the desired 
results. PAT does not have access to a large amount of clinical 
data to train the network. Especially for reconstruction 
problems, we often need raw data, which is only available in 
research lab. Therefore, we seek to train neural networks using 
simulation data and test the trained models in experiments. 

The MATLAB toolbox k-Wave [11] is used to generate the 
training data. The simulation setup is shown in Figure 1, where 
a linear array transducer was placed at the top of the region of 
interest (ROI). The sample is placed in the 38.4×38.4 mm size 
of ROI, and the linear array probe with 128 elements can 
receive PA signals. We record the raw data of the sensor, 
generate beamformed images and ground truth for training and 
testing. All images are 128×128 pixels and acoustic speed is 
set as 1500 m/s. 

The factitious segmented vessel from public fundus oculi 
CT imaging [12] can be deployed with initial pressure 
distribution. The vessels need to be segmented and pre-
processed. After a series of operations (position change, 
rotation, etc.), the dataset will be loaded into k-Wave 
simulation tool as the initial pressure distribution. 
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Figure 1. The illustration of the simulation setup. 

B. Architecture of Y-Net 

Most CNN architecture only establishes a single input-
output stream for reconstruction (signals or image). For the 
image reconstruction from original raw PA signals, it is an ill-
posed problem considering relationship between raw PA 
signals and ground truth, although the raw data contains more 
information about the object. For the post-processing 
operation, it inputs the conventional results (e.g. delay-and-
sum beamforming), and loses some information about the 
object. Figure 2 indicates the information loss after 
beamforming, which loses backbone information from the 
difference about 80%. It is difficult to distinguish some 
branches and artifacts of matched difference from Figure 2(c). 
The elimination result of the artifact is not satisfactory for non-
trained data, but it provides rich texture information of the 
target. Therefore, we assume that it may be a good solution to 
combine the raw PA signals and beamformed images as input 
data. It deserves noting that the raw PA signals and 
beamformed image have different size and features, which 
inspired us to build the neural network with two inputs.  

 
Figure 2. Comparison of information loss in traditional  beamforming 
method. (a) The ground truth; (b) The delay-and-sum beamforming result of 
(a); (c) The difference between (a) and (b). 

The proposed Y-Net integrates both of features with two 
inputs by two different encoders. The global architecture of Y-
Net is shown in Figure 3, which inputs the raw PA signals to 
an encoder (Encoder II), and processes the raw data to obtain 
an imperfect beamformed image as the input of another 
encoder (Encoder I). Being different from U-Net [13], the 
proposed Y-Net enables two inputs for different types of 
training data that is optimized for hybrid reconstruction. The 
Y-Net consists of two contracting paths and a symmetric 

expanding path. Encoder I and Encoder II encode the texture 
features and physical features respectively, and the final 
decoder concatenates the features of both encoder outputs and 
generates the final result.  

 
Figure 3. The global architecture of Y-Net. Two encoders extract different 
input feature, which concatenates into the decoder. Both encoders have skip 
connections with the decoder. More detail of the encoders and decoder will be 
illustrated in next section. 

Encoder I: The Encoder I module takes the image 
reconstructed from raw PA data by conventional beamforming 
(we used the delay-and-sum). Figure 4 shows the Encoder I in 
detail, which is similar to the contracting path of U-Net. Every 
layer unit is composed of two 3×3 convolution, batch 
normalization and leaky rectified linear unit (ReLU), and a 
maximizing pooling to downsample the features. The image is 
passed through a series of layers that gradually downsample, 
and every layer acquired different information respectively. 
Meanwhile, every layer shared their information with the 
Decoder mirrored layers by skip connection. It is desirable to 
concatenate many low-level information such that the location 
of texture will be passed to the Decoder. 

 
Figure 4. The Encoder I module of Y-Net. The copied features concatenate 

into Decoder in sequence number. 

Encoder II: The Encoder II module is shown in Figure 5, 
which takes the raw PA signals as input. The structure of every 
layer is the same as Encoder I except the bottom layer. An 
extra 20×3 convolution is put on the middle of the bottom 
layer, which translates the 160×8 features map to 8×8. 
Meanwhile, the signals have a longer size in time-dimension, 
and a larger receptive field is desirable to focus more 
information in this dimension. Every layer also shared their 
information with the Decoder mirrored layers by resizing and 
skipping connection. The raw data contains complicated 
feature, and Encoder II filtrates the feature as a supplement for 
the information loss of input of Encoder I during the 
beamforming process. 
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Figure 5. The Encoder II module of Y-Net. The copied features concatenate 

into Decoder in sequence number. 

Decoder: The outputs of the two encoders are taken to the 
decoder after concatenation. The detail of the Decoder is 
shown in Figure 6, which are reversed layers compared with 
Encoder I. Every layer unit is composed of two 3×3 
convolution, and an up-convolution to upsample the features. 
On the other hand, every layer receives low-level information 
from two encoders’ mirrored layers and concatenating with 
the feature from before layer of the decoder. The final layer 
will generate a 128×128 image. 

 
Figure 6. The Decoder module of Y-Net. The sequence number concatenation 

come from two encoders in order. 

III. TRAINING AND RESULTS 

A.  Training the network 

The dataset consists 4700 training sets and 400 test sets, 
which are generated by MATLAB k-Wave toolbox for PA 
simulation introduced before. We use the mean squared error 
(MSE) loss function to evaluate the training error, and the 
Adam optimization algorithm [14] is used to optimize the 
network iteratively. The MSE loss is shown as: 

2
( )MSE F

L x x gt                        (1) 

where x is the reconstruction image, and gt is the ground truth. 

The deep learning framework Pytorch is used to implement 
the proposed Y-Net. The hardware platform we used is a high-
speed graphics computing workstation consisting of two Intel 

Xeon E5-2690 (2.6GHz) CPUs and four NVIDIA GTX 
1080Ti graphics cards. The batch size is set as 64, and the 
running time is 0.453 second. The iteration is set as 1000 
epochs, and initial learning rate is 0.005. 

B. Results 

Three indexes of quantitative evaluation are used as the 
metric to evaluate the performance of different methods, 
which are structural similarity index (SSIM), peak signal-to-
noise ratio (PSNR) and signal-to-noise ratio (SNR) 
respectively. We compared two different conventional 
algorithms and three different models with our proposed 
approach. Time reversal (TR) and delay-and-sum (DAS) are 
selected as conventional algorithms for evaluating 
performance. We also compare two variant Y-Net with our 
approach, which removes the connection of raw data (Encoder 
II) and the connection of the beamformed image (Encoder I) 
with the Decoder respectively. Meanwhile, the post-
processing method based U-Net that only input an image after 
beamforming is also demonstrated for evaluation.  

The performance comparison is shown in TABLE I. The 
conventional algorithms show obvious artifacts, and the 
information’s synthesis for the position far away from the 
detector is insufficient. On the other hand, the deep-learning-
based methods has significant advantages, and the results are 
encouraging with regard to the proposed network's 
performance in comparison with the other networks. 

TABLE I.  QUANTITATIVE EVALUATION OF DIFFERENT METHODS FOR 

TEST SETS 

Algorithms SSIM PSNR SNR 

delay-and-sum (DAS) 0.2032 17.3626 1.7493 

time reversal (TR) 0.5587 17.8482 2.2350 

Y-Net 0.9119 25.5434 9.9291 

Y-Net (concatenate BF) 0.8988 25.2708 9.6577 

Y-Net (concatenate signals) 0.8622 23.9152 8.105 

U-Net 0.9002 25.0032 9.3233 

To further visually compare the performance of different 
methods, four image examples of results are shown in Figure 
7. We compare four rows and every method in the same 
column. From left to right, the method is DAS, TR, Y-Net only 
concatenates BF into the Decoder, Y-Net only concatenates 
raw signals into the Decoder, U-Net and the proposed 
complete Y-Net. 

The conventional algorithms are easily fooled by artifacts, 
and we can still see the appearance of the object roughly. The 
deep-leaning model based approach almost restores the rough 
outline of the object, and its performance differs for 
reconstructing of the details. It is interesting to note that all 
models connected to BF are susceptible to strong artifacts in 
BF, and occurred some errors in the details such as third row, 
fifth column. Y-Net (concatenate signals) can avoid the 
mentioned problems, but it is difficult to identify at small 
independent source. The proposed complete Y-Net provides a 
clearer texture in detail than the U-Net, which indicates that Y-
Net is more anti-disturbing to artifacts in BF by integrating the 
information in raw data. So the performance of Y-Net may be 
further improved by utilizing more advanced BF algorithm, 
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which seamlessly bridges the joint improvements of 
conventional reconstruction algorithms and deep learning. 

IV. CONCLUSION 

In this paper, a new CNN architecture, named Y-Net, is 

proposed, which consists of two intersecting encoder paths. 

The Y-Net takes two types of inputs that represent the texture 

structure of the conventional algorithms and the high-

dimensional features contained in the original raw signals 

respectively. We use k-Wave PA simulation tool to generate 

a large amount of training data to train the network, and 

evaluate our approach on the test set. In the experiment, we 

demonstrate the feasibility and robustness of our proposed 

method by comparing with other models and conventional 

methods. Y-Net still is affected by the artifacts of 

beamforming, which may be improved by using a better 

beamforming algorithm. In the future work, we will further 

validate Y-Net using ex vivo and in vivo data. 
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Figure 7. The example of performance comparison that different methods to reconstruct initial pressure. The four examples correspond to different four 

rows; every column correspond to different method, from left to right: ground truth, DAS, TR, Y-Net only concatenate BF into the Decoder, Y-Net only 
concatenate raw data into the Decoder, U-Net and Y-Net. 
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