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Abstract. Photoacoustic computed tomography (PACT) breaks through the
depth restriction in optical imaging, and the contrast restriction in ultrasound
imaging, which is achieved by receiving thermoelastically induced ultrasound
signal triggered by an ultrashort laser pulse. The photoacoustic (PA) images
reconstructed from the raw PA signals usually utilize conventional reconstruc-
tion algorithms, e.g. filtered back-projection. However, the performance of
conventional reconstruction algorithms is usually limited by complex and
uncertain physical parameters due to heterogeneous tissue structure. In recent
years, deep learning has emerged to show great potential in the reconstruction
problem. In this work, for the first time to our best knowledge, we propose to
infuse the classical signal processing and certified knowledge into the deep
learning for PA imaging reconstruction. Specifically, we make these contribu-
tions to propose a novel Knowledge Infusion Generative Adversarial Network
(Ki-GAN) architecture that combines conventional delay-and-sum algorithm to
reconstruct PA image. We train the network on a public clinical database. Our
method shows better image reconstruction performance in cases of both full-
sampled data and sparse-sampled data compared with state-of-the-art methods.
Lastly, our proposed approach also shows high potential for other imaging
modalities beyond PACT.
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1 Introduction

Photoacoustic imaging (PAI) is a hybrid imaging technique based on the photoacoustic
(PA) effect that is excited by a laser pulse. The applications of PAI have covered many
interesting biomedical imaging areas, such as imaging of oxyhemoglobin saturation,
melanoma or chromophore for both cancer diagnostics and treatment monitoring [1, 2].
More specifically, photoacoustic computed tomography (PACT) acquires PA signals
using multi-element ultrasound array, and rebuilds the image from PA signals using the
reconstruction algorithm. Conventional reconstruction methods, e.g. back-projection
and time reversal are widely applied in PA image reconstruction, which however
suffers from artifacts and information loss.

Recently, deep learning based approach has been developed to resolve the inverse
problem, which basically includes two schemes: training a model that map the raw
signals to final image, or ameliorating the result of the conventional reconstruction
algorithm (i.e. post-processing) [3, 4]. The input of the former scheme contains all of
the physical informations about the target, but there is a huge gap between raw signals
and final PA image, which lacks textural information to provide direct physical rela-
tionship. On the other hand, the input of the latter scheme reserves the direct physical
relationship by conventional reconstruction method, which however only approximates
the ground-truth and loses some detailed information. Furthermore, these methods rely
on the brute force of big data.

To go beyond brute force and utilize the merits of both schemes, in this paper, we
propose Knowledge Infusion Generative Adversarial Network (Ki-GAN) to boost
reconstruction performance. The knowledge comes from two sources: (1) Traditional
signal processing inspiration (e.g. raw PA signals); (2) Traditional certified recon-
struction algorithm (e.g. PA images reconstructed from back-projection). We attempt to
introduce signal processing knowledge for framework design and embedding certified
knowledge into image feature for PA imaging reconstruction. We enlighten an inno-
vative and effective convolutional kernel to bridge the gap between raw signals and
image, and propose a novel Ki-GAN to reconstruct the PA image, which merges the
conventional reconstruction algorithms (e.g. delay-and-sum) as a part of the architecture
and is fed with the raw PA data as input. To infuse the knowledge, our primary con-
tribution is to suggest a novel framework to infuse the signal processing knowledge and
conventional reconstruction knowledge, and achieve better results compared with prior
work. Hemoglobin is the main contrast of biological tissue in PAI, and we premise the
vessel is the prime target for reconstruction. A set of vessels data is used for training and
validating the architecture, which utilizes MATLAB to load the treated segmented blood
vessels from the public clinical database [5]. To ensure the performance in different
conditions, a set of sparse data is used to test our approach. Furthermore, the in vivo PA
imaging experiments have also been performed to validate our approach further. The
code is available at https://github.com/chenyilan/MICCAI19-Ki-GAN.
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2 Methods

In this work, we mainly focus on how to infuse more knowledge into the deep learning
based imaging framework in Fig. 1. In the following, we will introduce our proposed
solution to bridge the gap between PA signals and image by designing a new Auto-
Encoder (AE) with signal processing knowledge and embedding a certified algorithm
into image feature.

2.1 Introducing Signal Processing Knowledge for Auto-Encoder Design

As a backbone of our proposed Ki-GAN, our designed AE consists of two parts: (1) to
adapt the AE to the physical PA signals, we propose the Auto-Encoder with PA Signal
Sampling Inspired Kernel; (2) to further constrain the latent feature between PA signal
and image, we introduce the Auto-Encoder with Image Feature Supervision.

PA Signal Sampling Inspired Kernel. As aforementioned, since the skip connection
of U-Net for raw data is harmful to the decoder, we propose to adapt Auto-Encoder as our
cornerstone rather than U-Net [6]. The input raw data has two dimensions: the transducer
channel and the signal temporal distribution, where the dimension of signal temporal
distribution is much larger than the transducer channel dimension. The large local
receptive field is needed to identify the signal with larger length. Therefore, we apply
convolutional kernel with 20 � 3 size to replace 3 � 3 size in the bottom layer of the
encoder and kernel with 5 � 3 size to replace 3 � 3 size in other layers of the encoder,
which is called PA Signal Sampling Inspired Kernel (PSSIK). We apply commonly-used
MSE (mean square error) loss as our pixel loss, which is expressed as follow:

Lpixel ¼ y� ŷ0k k2F ð1Þ

where y, ŷ0 denote ground-truth and output image respectively.

Fig. 1. The overall architecture of Ki-GAN; KEB is convolutional layers; DAS is a conventional
reconstruction algorithm. KEB: knowledge embedding branch; DAS: delay-and-sum.
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Image Feature Supervision. To improve low-level features of the raw PA signal in
the encoder, we assign auxiliary supervisions directly to the output of the encoder
network (i.e. ẑ in Fig. 1). The auxiliary loss is computed as follow:

Laux ¼ z� ẑk k2F ¼ f ðyÞ � ẑk k2F ð2Þ

where ẑ denotes latent feature, and z = f (y) denotes latent feature of ground-truth image
y, where f denotes down-sampling operation on y. The more details of our proposed
Auto-Encoder are provided in the supplementary materials.

2.2 Embedding Certified Knowledge into Image Feature

As mentioned above, we propose a solution to bridge the gap between the PA signal
and image. Considering the raw PA signals are lacking texture information, we further
introduce Knowledge Embedding Branch (KEB) to provide the textural information by
converting the certified knowledge from DAS, as shown in Fig. 1. The result of DAS is
an imperfect image which is confused by incident artifacts. To adapt the different size
of vessels and eliminate the artifacts, three Texture Blocks containing two kernels with
3 � 3 and 1 � 1 constitute the KEB inspired by inception block [7] as shown in
Fig. 2. Simultaneously, these blocks can maintain a fast computation and less
parameters compared with a deep convolutional branch. To improve the KEB, we
utilize the textural loss to restrict the textural maps, which is expressed as follow:

Ltex ¼ y� ŷ1k k2F ð3Þ

where ŷ1 denotes the textural maps.

2.3 Ki-GAN: Knowledge Infusion GAN

As shown in Fig. 1, by integrating above two methods, we further propose to make use
of adversarial learning [8] to improve the ineffectiveness of convolutional neural net-
works in modeling correlation between the PA signals and the detailed vessel recon-
struction. On the other hand, pixel loss is an average operation, that is to say, the pixel
loss will result in image smooth and blurring. Therefore, the generative adversarial

Fig. 2. Three Texture Blocks constitute the Knowledge Embedding Branch.
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network is needed. The generator outputs the reconstructed image ŷ0, and is also
restricted by adversarial loss, which is calculated as follow:

LadvG ¼ DðyÞ � Dðŷ0Þk k2F ð4Þ

where D is a function that outputs an intermediate layer of the discriminator. Our
discriminator is inspired by PatchGAN [9] to penalize the texture at the scale of
patches (see Fig. S2 in supplementary materials), and the adversarial loss can be
expressed as:

LadvD ¼ �Ex0;y½logDðx0; yÞ� � Ex0;ŷ0 ½logð1� Dðx0; ŷ0ÞÞ� ð5Þ

Finally, the generator network is trained by minimizing the total loss:

Ltotal ¼ kadvLadvG þ kpixLpixel þ kauxLaux þ ktexLtex ð6Þ

where kadv, kpix, kaux and ktex are hyper-parameters.

3 Experiments and Results

3.1 Datasets and Evaluation

The proposed approach requires a large amount of data for training the model, which is
difficult to obtain since the current PAI equipment is still in the stage translating from
preclinical to clinical application, and not available in the clinic. Therefore, we convert
the publicly available datasets of fundus oculi [5] as the photoacoustic initial pressure
distribution. The toolbox of k-wave [10] in MATLAB reads the initial pressure to
generate the raw PA signals for training.

The vessels are surrounded by 120 channels’ transducers with 18 mm radius. For
each PA signal, the total recorded points are 2560 with 150 MHz sampling rate. The
pixel size of the initial pressure map is 128 � 128, and the output of the network is
128 � 128 as well. The center frequency of the ultrasound transducer is set as 5 MHz
with 80% bandwidth, and the propagation velocity of ultrasound is 1500 m/s.

As the original dataset is small, we adopt some preprocessing to expand the data
volume. Firstly, the complete blood vessel of fundus oculi is segmented into four equal
parts; and then randomly transform (e.g. rotations and transpositions) and superpose
two segmented blood vessels. After a series of treatment, we can acquire excessive
initial pressure for PA imaging and generate sufficient training data.

The whole dataset is composed of 4300 training samples and 500 test samples.
Simultaneously a set of sparse data are also utilized to evaluate the proposed approach,
which compresses the signal channels from 120 to 40. In addition, we also explored rat
thigh experimental data for the purpose of verifying the validity of the proposed
approach in animal imaging in vivo.
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3.2 Training Details

The framework is implemented in PyTorch. The network is fed the 2560 � 120 raw
data as input with setting batch size as 32. The generator can be trained by Eq. (6), the
kaux and ktex are set as 0.5 for both, which are optimum choices compared with
different values (we also list the performance of different parameters values in sup-
plementary materials). The kadv and kpix are set as 0.04 and 1 respectively. The dis-
criminator can be trained by Eq. (5). In our evaluation, the simple delay-and-sum
(DAS) algorithm is chosen as the image textural knowledge infused into Ki-GAN.

The computing platform we used is a high-speed graphics computing workstation
consisting of Intel Xeon E5-2690 (2.6 GHz) � 2 central processing unit (CPU) and
NVIDIA GTX 1080ti � 4 graphics processing units (GPU). The time consumption of
every batch is 0.795 s in training stage.

3.3 Experimental Results

Full-Sampled Data. Figure 3 has shown a sample of results generated by different
models, which comprise DAS, post-processing model (U-Net) and Ki-GAN. The
images of DAS cannot avoid the artifacts albeit they preserve the vessel’s sketch
indistinctly. The images from our proposed Ki-GAN are closer to ground-truth than U-
Net. To further compare the performance of different approaches, we compare the
results of the test set using three indexes of quantitative metrics: (1) structural similarity
index (SSIM); (2) peak signal-to-noise ratio (PSNR); (3) signal-to-noise ratio (SNR).
We also list the ablation studies beyond the methods shown in Fig. 3, including Auto-
Encoder (AE#1), AE#1 with PSSIK (AE#2), AE#2 with Image Feature Supervision
(AE#3), AE#3 with Embedded Certified Knowledge (AE#4), and U-Net inputting the
raw data (U-Net1). The quantitative comparison results are shown in Table 1, which
indicate that our proposed Ki-GAN gets the upper hand compared with other models.
Meanwhile, the ablation studies’ results also validate the effectiveness of different
modules of our proposed method. More results of ablation studies and comparative
experiments are provided in the supplementary materials (Fig. S4–5).

Fig. 3. Example of quantitative comparison using full-sampled data. From left to right: ground-
truth, delay-and-sum, U-Net and Ki-GAN. The white circles indicate the local details.

278 H. Lan et al.



Sparse-Sampled Data. We further compare the performance of U-Net (post-
processing) and Ki-GAN using the sparse data, which include only 40 channels’ raw
data to reconstruct the vessel image. It is noteworthy that we fill the zero data to keep the
number of channel in 120 due to the fixed size of the input data. The qualitative com-
parison is shown in Fig. 4, which indicates that the performance of the proposed method
is better than U-Net. The white circles marked three details in Fig. 4, showing that the
result of Ki-GAN identifies with ground-truth image more closely compared with U-Net.
The quantitative evaluation results also agree well with Fig. 4 as Table 2 showed.

In Vivo Data. Last but not least, the in vivo PA imaging experiments of a rat thigh
have also been performed to validate our approach. Three methods including con-
ventional iteration-based reconstruction, U-Net and Ki-GAN, are performed to illus-
trate the results in Fig. 5. It shows that our proposed model possesses a stronger
contrast and fewer artifacts compared with other two methods in an insufficient training
data set. The U-Net has a poor generalization performance compared with Ki-GAN in
in vivo data, and suffers inevitable artifacts.

Table 1. Evaluation results of different models for the test sets (full-sampled data). U-Net1:
input the signals and resize to concatenation, U-Net2: input the result of DAS, AE#1: Auto-
Encoder, AE#2: AE#1 with PSSIK, AE#3: AE#2 with Image Feature Supervision, AE#4: AE#3
with Embedded Certified Knowledge.

DAS U-Net1 U-Net2 AE#1 AE#2 AE#3 AE#4 Ki-GAN

SSIM 0.2159 0.6453 0.8749 0.6519 0.6818 0.6931 0.9123 0.9285
PSNR 15.6176 18.4519 24.0175 18.7033 19.1193 19.1529 24.8951 25.5115
SNR 1.6386 4.3237 10.1285 4.7243 5.1403 5.1739 10.6161 11.5324

Fig. 4. Example of quantitative comparison using sparse-sampled data. From left to right:
ground-truth, delay-and-sum, U-Net and Ki-GAN. The white circles indicate the local details.

Table 2. Evaluation results of different models for the test sets (sparse-sampled data).

DAS U-Net Ki-GAN

SSIM 0.1842 0.8174 0.8617
PSNR 15.5123 21.348 22.7398
SNR 1.5333 7.4689 8.7607
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The time consumption of the iterative reconstruction algorithm with 10 iterations,
U-Net and Ki-GAN are 331.51 s, 0.01 s and 0.025 s. The iterative algorithm depends
on the repetitive calculation of the forward and backward models in the loop cycle. The
image quality and time consumption show inevitable compromise in the iterative
algorithm. U-Net shows the fastest mapping from image to image that consumes least
time in three methods. The proposed Ki-GAN infuses the conventional reconstruction
and raw-data based feature map. Meanwhile, the 0.025 s time consumption still suf-
ficiently satisfies the requirement of real-time imaging for most clinical demands.

4 Conclusion

Fast and accurate image reconstruction is a significant problem in PACT. In this paper,
we propose a novel framework of knowledge infusion for reconstructing the PA image,
which merges the conventional reconstruction with burgeoning deep learning. A novel
Ki-GAN is proposed to rebuild the initial PA pressure of vessels. Ablation studies and
comparative experiments show that the proposed model can perform very well in full-
sampled data, sparse-sampled data, and in vivo experimental data. In the future work,
we will try to exploit the real-time imaging system based on this method and extend the
imaging dimension from 2D to 3D.
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