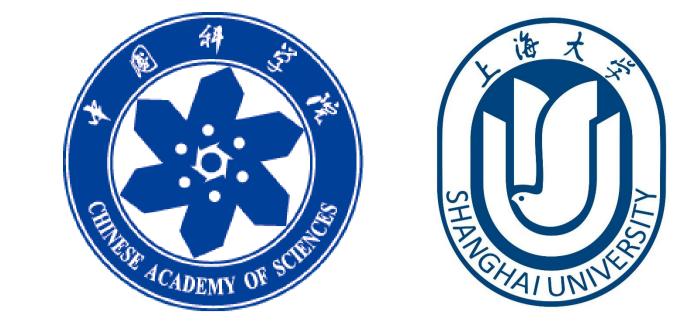
# Multi-Cell Multi-Task Convolutional Neural Networks for Diabetic Retinopathy Grading



#### Kang Zhou<sup>1,2</sup>, Zaiwang Gu<sup>2,3</sup>, Wen Liu<sup>1</sup>, Weixin Luo<sup>1</sup>, Jun Cheng<sup>2</sup>, Shenghua Gao<sup>1</sup>, Jiang Liu<sup>1</sup>

<sup>1</sup> ShanghaiTech University, Shanghai, China <sup>2</sup> Chinese Academy of Sciences, Ningbo, China <sup>3</sup> Shanghai University, Shanghai, China



## Introduction

Diabetic Retinopathy (DR) is a non-negligible eye disease among patients with Diabetes Mellitus, and automatic retinal image analysis algorithm for the DR screening is in high demand.

# **Proposed Method**

Multi-Task Learning: Softmax loss doesn't consider the *relationships* of DR images with different stages:  $L_1 = -\frac{1}{m} \left[ \sum_{i=1}^{m} \sum_{j=1}^{k} 1\{y^{(i)} = j\} \log(\text{Prob}_{ij}) \right]$ 

### Problem:

Label: 0, 1, 2, 3, 4 (Larger number means the severity of the disease becomes more significant)

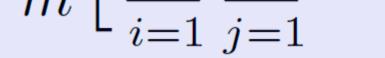
Task:

Input: image / **Output**: it's grade

- Challenge (DR grading ≠ general image classification): The classes in DR grading are *relational* while in general image classification are not
- The image resolution of DR images is *significantly higher* than that of general images

# Contribution

We propose a Multi-Task Learning strategy to simultaneously improves the classification accuracy and discrepancy between ground-truth and predicted label.



Mean Square Error (MSE) loss is *not robust* for classification task:

$$L_2 = \frac{1}{m} \sum_{i=1}^{m} (y - y^{(i)})^2$$

Multi-task loss:

$$L = L_1 + L_2$$

Multi-Cell Architecture: Small resolution image often leads to information loss especially when the lesion is small. Large resolution image will introduce more computational costs and lead to the gradient vanishing/exploding problem in optimization.

SPATIAL RESOLUTION OF INPUT IMAGE AND SOME FEATURE MAP

| input image   | $224 \times 224$ | 256×256 | $448 \times 448$ | 720×720 |
|---------------|------------------|---------|------------------|---------|
| before switch | 5×5              | 8×8     | 12×12            | 21×21   |

We propose a Multi-Cell CNN architecture which not only accelerates the training procedure, but also improves the classification accuracy.

#### after multi-cell $5 \times 5$ $8 \times 8$ $5 \times 5$ $4 \times 4$

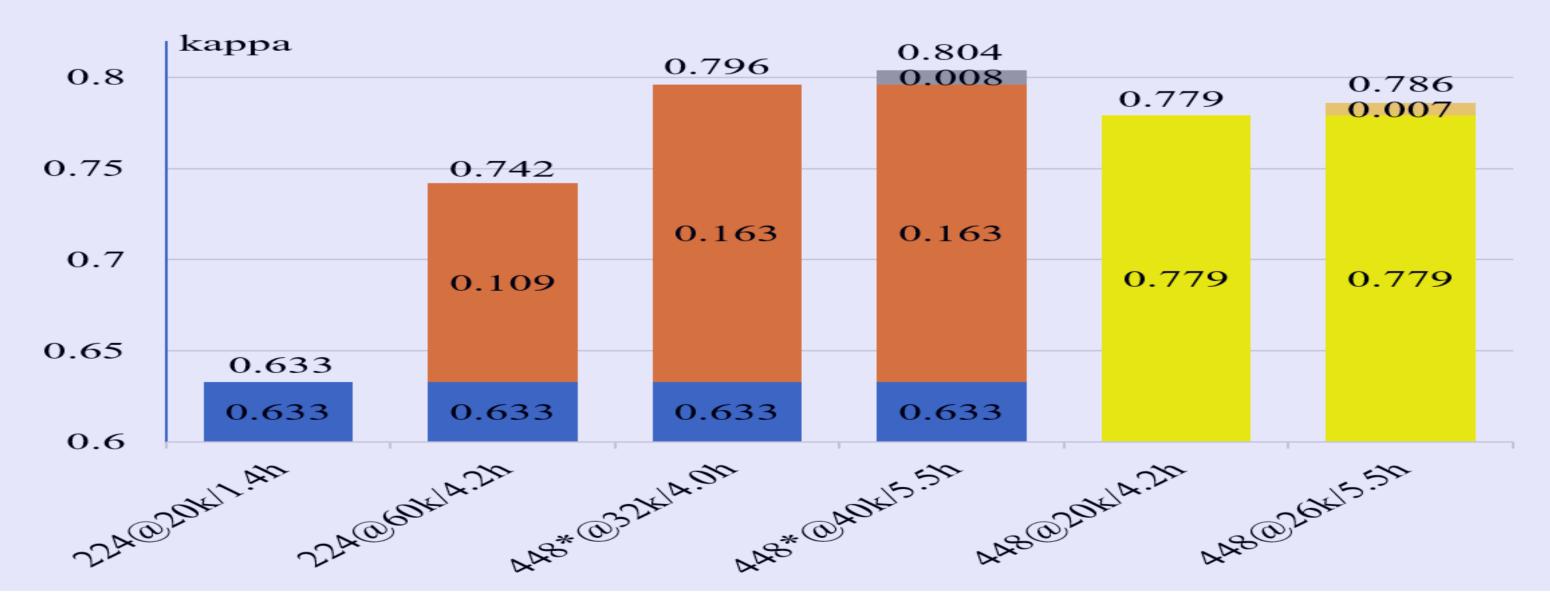
Multi-Cell Architecture *gradually increase the depth of* network architecture and the resolution of images.

# Experiment

To evaluate each module of M<sup>2</sup>CNN, we conduct ablation experiments.

**RESULTS OF EACH MODULE** 

| Train            | MSE    | CE    | Multi  | -Task | $M^2C$ | NN    |
|------------------|--------|-------|--------|-------|--------|-------|
| Test             | scores | prob. | scores | prob. | scores | prob. |
| 224×224          | 0.720  | 0.725 | 0.742  | 0.718 | -      | -     |
| $448 \times 448$ | 0.790  | 0.772 | 0.812  | 0.782 | 0.830  | 0.812 |
| 720×720          | 0.835  | 0.751 | 0.841  | 0.826 | 0.844  | 0.842 |



Compare our M<sup>2</sup>CNN method with the former methods achieving the best performance on Kaggle challenge and the state-of-the-art method (Zoomin-Net).

#### COMPARISON WITH OTHER ALGORITHMS

| Algorithm                | val set | test set |
|--------------------------|---------|----------|
| Min-pooling              | 0.860   | 0.849    |
| Zoom-in-Net              | 0.857   | 0.849    |
| o_O                      | 0.854   | 0.844    |
| <b>Reformed Gamblers</b> | 0.851   | 0.839    |

| M-Net+A-Net        | 0.837 | 0.832 |
|--------------------|-------|-------|
| BaseNet            | 0.835 | 0.828 |
| BaseNet+MT         | 0.841 | 0.838 |
| M <sup>2</sup> CNN | 0.844 | 0.841 |

