

Multi–Cell Multi–Task Convolutional Neural Networks for Diabetic Retinopathy Grading

Kang Zhou, Zaiwang Gu, Wen Liu, Weixin Luo, Jun Cheng, Shenghua Gao, Jiang Liu

> EMBC 2018, Honolulu, USA Jul. 20, 2018

Proposed Method

Diabetic Retinopathy Grading:

(a) Grade 0

(b) Grade 1

(c) Grade 2

2

(d) Grade 3

(e) Grade 4

> Problem :

- Label: 0, 1, 2, 3, 4
- Larger number means the severity of the disease becomes more significant

> Task :

- Input: Image
- *Output*: Its grade

Diabetic Retinopathy Grading:

(a) Grade 0

(b) Grade 1

(d) Grade 3

(e) Grade 4

> Challenge

(DR grading \neq general image classification):

- The classes in DR grading are *correlative* while in general image classification are not
- The image resolution of DR images is significantly higher than that of general images

Diabetic Retinopathy Grading:

(a) Grade 0

(c) Grade 2

2

(d) Grade 3

(e) Grade 4

> Challenge

(DR grading \neq general image classification):

- The classes in DR grading are correlative while in general image classification are not
- The image resolution of DR images is *significantly higher* than that of general images

Diabetic Retinopathy Grading:

> Contribution :

- We propose a Multi-Task Learning strategy to simultaneously improves the classification accuracy and discrepancy between ground-truth and predicted label.
- We propose a **Multi-Cell CNN architecture** which not only accelerates the training procedure, but also improves the classification accuracy.
- Experimental results validate the effectiveness of our method. Further, our solution can be readily integrated with many other existing CNN based DR image diagnosis and other disease diagnosis.

Proposed Method: M²CNN

Proposed Method: M²CNN Multi-Cell Multi-Task Convolutional Neural Networks:

> Overall :

- The overall network architecture of our M²CNN
- Inception-Resnet-v2 is proposed in ^[1]

Proposed Method: M²CNN Multi-Cell Multi-Task Convolutional Neural Networks:

Multi-Task Learning :

 Softmax loss doesn't consider the relationships of DR images with different stages:

$$L_1 = -\frac{1}{m} \left[\sum_{i=1}^m \sum_{j=1}^k 1\{y^{(i)} = j\} \log(\text{Prob}_{ij}) \right]$$

 Mean Square Error (MSE) loss is not robust for classification task:

$$L_2 = \frac{1}{m} \sum_{i=1}^m (y - y^{(i)})^2$$

Multi-task loss:

$$L = L_1 + L_2$$

Multi-Task

Proposed Method: M²CNN Multi-Cell Multi-Task Convolutional Neural Networks:

input image	224×224	448×448	720×720
before switch	5×5	12×12	21×21
after multi-cell	5×5	5×5	4×4

The spatial resolution of input image and some feature map

Inception-Resnet-v2

Multi-Cell

> Multi-Cell Architecture :

- *Small resolution* image often leads to information loss especially when the lesion is small
- *Large resolution* image will introduce more computational costs and lead to the gradient vanishing/exploding problem in optimization
- Note: Multi-Cell Architecture *gradually increase* the depth of network architecture and the resolution of images
- Note: The architecture of *Normal Cell-C* and *Reduction Cell-B* in Multi-Cell and Inception-Resnet-v2 are same.

Proposed Method: M²CNN Process of Multi-Cell Architecture : **1-st training stage**

Depth of network architecture and the *scale* of images are *gradually increased*.

Proposed Method: M²CNN Process of Multi-Cell Architecture : **2-ed training stage**

Proposed Method: M²CNN Process of Multi-Cell Architecture : **3-rd training stage**

trained: W₃ (*Training's finished*!!!)

Experiment Experimental Setup

Dataset:

Kaggle organized a comprehensive competition in order to design an automated retinal image diagnosis system for DR screening in 2015^[2].

> Evaluation Metric:

We use the *quadratic weighted kappa* to evaluate our proposed methods, which is used in Kaggle DR Challenge.

Evaluation of Different Modules

> Multi-Task Learning Module

> Multi-Cell Architecture Module

Train	MSE	CE	Multi-Task		M ² CNN	
Test	scores	prob.	scores	prob.	scores	prob.
224×224	0.720	0.725	0.742	0.718	-	-
448×448	0.790	0.772	0.812	0.782	0.830	0.812
720×720	0.835	0.751	0.841	0.826	0.844	0.842

Evaluation of Different Modules

- Multi-Task Learning Module
- > Multi-Cell Architecture Module

Performance Comparison

Algorithm	val set	test set
Min-pooling	0.860	0.849
Zoom-in-Net [11]	0.857	0.849
0_O	0.854	0.844
Reformed Gamblers	0.851	0.839
M-Net+A-Net [11]	0.837	0.832
BaseNet	0.835	0.828
BaseNet+MT	0.841	0.838
M^2CNN	0.844	0.841

[11] Z. Wang, Y. Yin, J. Shi, W. Fang, H. Li, and X. Wang. Zoom-in-net: Deep mining lesions for diabetic etinopathy detection. InMICCAI, 2017

