

Ki-GAN: Knowledge Infusion Generative Adversarial Network for Photoacoustic Image Reconstruction *in vivo*

<u>Hengrong Lan</u>^{\$,1}, Kang Zhou^{\$,1,2}, Changchun Yang¹, Jun Cheng², Jiang Liu^{3,2}, Shenghua Gao^{*,1}, <u>Fei Gao</u>^{*,1}

¹School of Information Science and Technology, ShanghaiTech University, China

²Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, China

³Department of Computer Science and Engineering, Southern University of Science and Technology, China

15/10/2019

- 1. Background
- 2. Methodology
- 3. Experiments and Results

4. Conclusion

- 1. Background
- 2. Methodology
- 3. Experiments and Results
- 4. Conclusion

Background

The photoacoustic (PA) effect is the physical basis for PAT

Light illumination, Light absorption, Temperature rise, Thermoelastic expansion, Ultrasonic emission

1. Background

- 2. Methodology
- 3. Experiments and Results

4. Conclusion

Methodology

》混合成像系统实验室 Hybrid Imaging System Lab (HISLab)

上海科技大学 ShanghaiTech University

Knowledge Infusion-GAN

© Hybrid Imaging System Lab <u>WWW.hislab.</u>cn

1. Background

2. Methodology

3. Experiments and Results

4. Conclusion

© Hybrid Imaging System Lab WWW.hislab.cn

Experiments •

- The sample is placed in the 38.4×38.4 mm region;
- 120 transducers are placed around the target as a circle;
- The MATLAB toolbox k-Wave is used to generate the training data;
- Full-sampled and sparse-sampled data are used to validate our method;
- *In-vivo* data are also validated in our method.

Ablation study

Table 1. Evaluation results of different models for the test sets (full-sampled data). U-Net¹: input the signals and resize to concatenation, U-Net²: input the result of DAS, AE#1: Auto-Encoder, AE#2: AE#1 with PSSIK, AE#3:AE#2 with Image Feature Supervision, AE#4: AE#3 with Embedded Certified Knowledge.

	DAS	U-Net ¹	U-Net ²	AE#1	AE#2	AE#3	AE#4	Ki-GAN
SSIM	0.2159	0.6453	0.8749	0.6519	0.6818	0.6931	0.9123	0.9285
PSNR	15.6176	18.4519	24.0175	18.7033	19.1193	19.1529	24.8951	25.5115
SNR	1.6386	4.3237	10.1285	4.7243	5.1403	5.1739	10.6161	11.5324

Full-sampled data 120 channels

© Hybrid Imaging System Lab WWW.hislab.cn

Results

Sparse-sampled data 40 channels

Table 2.Evaluation results of different models for the test sets (sparse-sampled data).

	DAS	U-Net	Ki-GAN
SSIM	0.1842	0.8174	0.8617
PSNR	15.5123	21.348	22.7398
SNR	1.5333	7.4689	8.7607

The vessel imaging of rat thigh. (120 channels)

© Hybrid Imaging System Lab WWW.hislab.cn

- 1. Background
- 2. Methodology
- 3. Experiments and Results

4. Conclusion

© Hybrid Imaging System Lab <u>WWW.hislab.cn</u>

Conclusion

- The artifacts are essential to sparse-view photoacoustic tomography for conventional algorithms;
- We proposed Ki-GAN to reconstruct the PA image by infusing knowledge, and combine the conventional reconstruction with deep learning;
- This approach fills the gap between existing direct-processing and post-processing methods;
- A main texture come from the KEB; The latent features come from Auto-Encoder.

混合成像系统实验室 Hybrid Imaging System Lab (HISLab)

Thank you!

LAB website

15/10/2019

Hengrong Lan

M-1-B-048

Full paper

© Hybrid Imaging System Lab